Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803
نویسندگان
چکیده
Cyanobacteria have been engineered to produce ethanol through recent synthetic biology efforts. However, one major challenge to the cyanobacterial systems for high-efficiency ethanol production is their low tolerance to the ethanol toxicity. With a major goal to identify novel transporters involved in ethanol tolerance, we constructed gene knockout mutants for 58 transporter-encoding genes of Synechocystis sp. PCC 6803 and screened their tolerance change under ethanol stress. The efforts allowed discovery of a mutant of slr0982 gene encoding an ATP-binding cassette transporter which grew poorly in BG11 medium supplemented with 1.5% (v/v) ethanol when compared with the wild type, and the growth loss could be recovered by complementing slr0982 in the Δslr0982 mutant, suggesting that slr0982 is involved in ethanol tolerance in Synechocystis. To decipher the tolerance mechanism involved, a comparative metabolomic and network-based analysis of the wild type and the ethanol-sensitive Δslr0982 mutant was performed. The analysis allowed the identification of four metabolic modules related to slr0982 deletion in the Δslr0982 mutant, among which metabolites like sucrose and L-pyroglutamic acid which might be involved in ethanol tolerance, were found important for slr0982 deletion in the Δslr0982 mutant. This study reports on the first transporter related to ethanol tolerance in Synechocystis, which could be a useful target for further tolerance engineering. In addition, metabolomic and network analysis provides important findings for better understanding of the tolerance mechanism to ethanol stress in Synechocystis.
منابع مشابه
Systematic and functional identification of small non-coding RNAs associated with exogenous biofuel stress in cyanobacterium Synechocystis sp. PCC 6803
BACKGROUND The unicellular model cyanobacterium Synechocystis sp. PCC 6803 is considered a promising microbial chassis for biofuel production. However, its low tolerance to biofuel toxicity limits its potential application. Although recent studies showed that bacterial small RNAs (sRNAs) play important roles in regulating cellular processes in response to various stresses, the role of sRNAs in ...
متن کاملIdentification of alcohol stress tolerance genes of Synechocystis sp. PCC 6803 using adaptive laboratory evolution
Background Synechocystis sp. PCC 6803 is an attractive organism for the production of alcohols, such as isobutanol and ethanol. However, because stress against the produced alcohol is a major barrier for industrial applications, it is highly desirable to engineer organisms with strong alcohol tolerance. Results Isobutanol-tolerant strains of Synechocystis sp. PCC 6803 were obtained by long-te...
متن کاملRNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp. PCC 6803
UNLABELLED BACKGROUND Fermentation production of biofuel ethanol consumes agricultural crops, which will compete directly with the food supply. As an alternative, photosynthetic cyanobacteria have been proposed as microbial factories to produce ethanol directly from solar energy and CO2. However, the ethanol productivity from photoautotrophic cyanobacteria is still very low, mostly due to th...
متن کاملSalt-dependent expression of glucosylglycerol-phosphate synthase, involved in osmolyte synthesis in the cyanobacterium Synechocystis sp. strain PCC 6803.
The cyanobacterium Synechocystis sp. strain PCC 6803 is able to acclimate to levels of salinity ranging from freshwater to twice the seawater concentrations of salt by accumulating the compatible solute glucosylglycerol (GG). Expression of the ggpS gene coding for the key enzyme (glucosylglycerol-phosphate synthase) in GG synthesis was examined in detail. Under control conditions, the GgpS prot...
متن کاملIntegrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803
BACKGROUND Photosynthetic cyanobacteria have been recently proposed as a 'microbial factory' to produce butanol due to their capability to utilize solar energy and CO2 as the sole energy and carbon sources, respectively. However, to improve the productivity, one key issue needed to be addressed is the low tolerance of the photosynthetic hosts to butanol. RESULTS In this study, we first applie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015